文章编号:0253-2239(2002)03-0355-05

用干涉法实现光学合成孔径技术

彭仁军 吴 健 杨春平 陈长庚

(电子科技大学应用物理研究所,成都 610054)

摘要: 分析了传统干涉成像方式的分辨率受限问题,提出一种干涉条纹场的合成来提高分辨率的方法,并以实验 验证了上述方法的可行性。

关键词: 干涉;合成孔径;错位 中图分类号:O436.1 文献标识码:A

1 引 言

高分辨率成像一直受到研究者们的重视。微波 合成孔径雷达获得了远远超过其衍射极限的分辨 率,在一定程度上接近甚至超过了传统的光学成像, 因而人们希望将微波合成孔径雷达技术移植到光学 波段,以获得更高分辨率的图像。但由于光波长极 短,微小的位置偏差便会造成极大的相位误差,使得 光学合成孔径雷达一直都没有真正工程化,已有的 光学合成孔径雷达技术仅限于实验室级别的实验及 理论分析^{1~3]}。利用相干光束形成的干涉条纹同目 标间的相对运动可以用来对目标成像,Aleksoff^[4]将 这种技术称为合成干涉成像技术,并利用上述思想 在实验室获得了点目标的一维像和二维像。

同微波合成孔径雷达移植过来的光学合成孔径 雷达(在此简称光学合成孔径雷达)相比较,干涉成 像有其独特的优点。光学合成孔径雷达对于相位的 记录是其重建目标像的核心,但运动过程中的机械 振动同大气扰动都会引起相位的剧烈变化,并且难 以补偿,而相位误差是目标重建的致命所在。干涉 成像则不然,对机械的扰动相对较易克服,而大气的 影响也相对低得多^[4],干涉成像对相干长度的要求 也比传统的相干探测低得多。

2 干涉成像

利用两点光源发出的光在空域形成干涉条纹, 如图1所示,当目标同干涉条纹间有相对运动时,每 个散射点的回波分量都会反映干涉条纹的特征,就 象各自记录了两点光源形成的全息图一样,而且各

收稿日期 2001-01-09; 收到修改稿日期 2001-03-19

散射点记录的全息图之间具有同其空间位置相联系的延迟。采用点探测器探测目标回波,探测器的输出反映出各全息图的叠加,同时反映了散射点的散射系数值的大小。对回波信号加以处理,如同对各全息图进行再现,将会得到构成目标的各散射点的位置和散射系数的信息,从而将目标重构出来。

Fig. 1 Schematic diagram of interferometric imaging

没有低频信息的全息图得到的像将会产生模 糊⁵¹,因而常采用的是目标处于两点光源连线的近 轴甚至同轴情形,此时干涉条纹场形式是菲涅耳波 带片或偏心的菲涅耳波带片。但这种干涉成像在两 点光源有相对运动时难以满足相位补偿要求,其分 辨率无法突破天线的衍射极限。

从干涉成像的原理来看,用于重建目标像的信 号同合成孔径雷达中的信号具有相似的形式。以一 维干涉成像为例,假定光源发出的光束光场分布在 一定角度范围内且光场强度为常数,采用与合成孔 径雷达同样的信号处理方式⁶¹,其最小可分辨距离 △*x* 同干涉条纹的空间带宽 *B* 呈倒数关系

$$\Delta x = 1/B. \tag{1}$$

由形成菲涅耳波带片形式条纹场时的几何结构 ,可 知其空间带宽为

$$B \approx dX / (z^2 \lambda), \qquad (2)$$

其中 $_d$ 为两点光源间距 $_X$ 为条纹场的范围 $_z$ 为 光源到目标的距离($_z \gg d$) $_\lambda$ 为光束波长。考虑到

22 卷

诸如能量、近轴条件、计算量等诸多因素,X不宜取 得太大。由上式可知,当波长、光场范围、目标到光源 的距离确定后,两点光源间距越大,空间带宽越宽。 将(2)式代入(1)式,得

$$\Delta x = z^2 \lambda / (dX). \tag{3}$$

同衍射极限的分辨率

$$\Delta x \approx (\lambda/D)z \tag{4}$$

相比较 ,干涉成像的等效孔径为

$$D' \approx dX/z \approx d\theta$$
, (5)

其中 θ 为光束发散角。

一般而言, θ 角是比较小的,U = 10 km,X = 10 m为例,此时 $\theta = 1 \text{ mrad}$,要合成一个仅0.1 m的 孔径,就需要两光源间距为 100 m。文献 4]采用两 透镜会聚光点等效两个点光源用于干涉成像实验。 采用透镜来合成点光源的位置,可以获得较大的点 源间距 d。两光源发出光束要求近乎完全重叠,发散 角近似相等。在两出瞳孔径相同的情况下,两光束分 别为出瞳后发散的球面波和先会聚后发散的球面波 时,此时可以获得的最大 $d\theta \approx 2D$,其中 D 表示出 瞳的孔径尺寸。

3 干涉法实现孔径合成的基本思想

依照全息原理,从同一张全息图上切下任一部 分均可以用来重建物体的像,切下部分的尺寸越 大,还原像的分辨率就越高。在满足近轴条件的空 域,两点光源形成的干涉条纹是菲涅耳环,采用光学 元件合成点光源形成的干涉条纹就象是从大的干涉 条纹场中取下的一小块,调整两光源位置,可以获取 不同空间角频率的干涉条纹场。在远距离近轴条件 下,干涉成像对目标的径向起伏不敏感(4],因此,尽 管要两点光源作连续的相对运动很不容易,但对它 们离散地定位却是可行的。干涉成像要可靠地获取 目标的像,最好采用主动扫描。当一次扫描完成后, 按一定角度调整光源相对位置,锁定后再作扫描,如 此继续,其结果相当于一幅大的干涉条纹场扫描了 目标。这就是用干涉法实现孔径合成的基本思想。

图 2 所示为一幅理想的菲涅耳波带片形式条纹 场。假定第一次定位形成的条纹场为 1 中的部分, 第二次定位形成的条纹场为 2 中的部分,如此继续 下去,直至第 n 幅条纹场。每次定位形成的条纹场 对目标作扫描,获取各自的回波,再将各回波数据综 合处理,得到的信号就相当于用一大的条纹场(图中 虚线框中的部分)扫描获取的回波。为了使综合得 到的大的条纹场尽量地连续,各次定位形成的条纹 场间有一定的重叠。图2中仅示出了一个方向的合 成,对另一方向也可作同样的处理。

Fig. 2 Process of synthesizing fringe

每次锁定后两光源形成的条纹可保证不再变 化,因而在每幅干涉条纹扫描时都可以较为准确地 进行记录。若以中心相位为0的条纹为标准条纹, 虽然每次形成的干涉条纹场具有偏离标准形式的不 同相位差,但相位差在各步内是不变的。采用合理 的方法搜寻出各步相位差,即可以将各场进行连接, 增加空间宽度和空间带宽,从而提高空间分辨率。

4 位置校正

每幅干涉条纹场的范围都可预知,将反映各幅 干涉条纹场的特征信号连接,形成一个合成的特征 信号。若采用相关处理方式,可用合成的特征信号 对每一步的输出作相关处理,得到多幅干涉条纹场 扫描目标的回波数据处理的结果,再综合出最后结 果,或者先对回波作数据连接处理,一次性得到处理 结果。无论采用哪种方式,都会存在错位现象,需作 位置校正。错位可分解为两部分,一是作数据处理 产生的移动,是已知的,容易校正;一是扫描时数据 记录的起始位置产生错位,是随机的,可通过预先定 位及相关联的数据将它们的范围缩到很小。

5 实 验

为验证上述想法,设计了一个实验,如图3所 示。由激光器发出的光经透镜L1和L2后会聚。一 光学玻片置于会聚点附近,光学玻片的两个面对会 聚点的像即等效为两个点光源,其两面反射的光将 在重叠区相干涉形成条纹场(在图3中,没有对光学 玻片中的具体折反光路作详细的表示,但要说明,在 近轴情况下,光学玻片反射产生的形成干涉条纹的 两路光近乎完全重叠)。目标H是由三个一维排列 的透射小孔(模拟三个点目标)。光学玻片锁定后, 利用反射镜 R₂ 使第一幅干涉条纹场依次扫描三个 点目标,当干涉条纹场扫过所有点目标后,调整光学 玻片角度,形成第二幅条纹场,该条纹场同第一幅条 纹场在空间频率上部分重叠,再使第二幅干涉条纹 场扫描目标,如此继续,直至扫完预定的干涉条纹 场。所有的干涉条纹场扫描目标时,用探测器进行 探测并采集数据送入计算机进行分析处理。为了抑 制散斑效应引起的强度起伏及由两光束互作用产生 的交叉项的影响,采用了较大接收孔径。实验的关键在于利用光学玻片的双面反射形成的干涉,它利用两个面对会聚点的虚像"合成"了两点光源,因而调整光学玻片的角度即可形成不同空间频率的条纹场。为信号处理的方便,采用了斩波器 S 对激光束斩波,探测器输出的将是在斩波信号上调幅的条纹场信息。值得指出的是,文献 4 採用透镜合成两点光源位置,本实验可以采用等效方式来估算孔径。

实验中采用了两幅干涉场进行综合,干涉场的 锁定采用的是手动锁定,He-Ne激光器输出功率为 5 mW。探测器用的是带前放的光电二极管 响应度 高于 0.5 V/μW 输出噪声低于 400 nW 数据采集用 的是带有 100 倍内增益的 AD 卡。同分辨率有关的 实验参数及估算结果如表 1。

Table 1. Parameters of experimental setup and

evaluated results

narameters of experimental setup	
glass	nai octup
giass	1.5
Thickness	1.5 mm
refractive index	≈1.53
wavelength	$0.6328 \ \mu m$
diameter of each fringe	$\approx 90 \text{ mrad}$
distance	
from mirror R ₂ to object	1 m
from equivalent sources to R_2	0.1 m
distance between the simulated	$3.5 \mathrm{mm}$ and $4.5 \mathrm{mm}$
point objects	5.5 mm and 4.5 mm
distance between centers of the	≈55 mm
two pieces of fringe	
key evaluated parameters	
distance between two	1.96 mm
equivalent sources	
case of first piece of fringe	
equivalent aperture size	0.176 mm
resolvable angle	3.60 mrad
resolvable distance	3.94 mm
case of synthesized fringe	
synthesized aperture size	0.264 mm
resolvable angle	2.40 mrad
resolvable distance	2.63 mm
表 1 的估算表明 ,采用单幅条纹场对相距	

3.5 mm的点分辨效果不佳,而对相距 4.5 mm 的点

可以很好地分辨;采用两幅场连接的方式则对三个 点均能作极好的分辨。根据信号检测理论,在高斯 噪声环境中,用匹配滤波方式可以获得最大的信噪 比。由于干涉条纹的形成会受到各种因素的影响而 产生畸变,已不再是理想的菲涅耳玻带片形式,有必 要准确地知道干涉条纹场中目标所经历轨迹的光强 实际分布。实验中通过测试干涉条纹扫过单透射点 探测器产生的回波来近似上述光场分布。

6 实验数据及处理结果

用两幅干涉场扫描单点模拟目标时采集信号如 图 4(a)、图 4(b)所示,而用同样两幅干涉场扫描三 点模拟目标时采集信号如图 4(c) 图 4(d)所示 :经 过包络检波及滤波等预处理后分别对应于图 5(a) 图 5(b) 图 5(c) 图 5(d);对单点情况图 5(a) 图 5 (b)进行连接处理,得到的结果如图 6(a),而对三点 情况图 5(c), 图 5(d)进行连接处理的结果如图 6 (b):单点情况的连接信号同三点情况的连接信号作 相关处理,其处理结果如图7(a),将这一处理结果 同低频条纹场单点同三点情况信号处理结果进行比 较 .低频条纹场的处理结果如图 7(b);图 8(a), ;图 8 b)还分别列出了低频条纹场和合成条纹场情况特 征信号的自相关处理结果。可以看到,由低频条纹 场所作的处理结果 ,三点之中有两点是不易分辨的 , 而且由于条纹数很少 旁瓣影响甚大 因而结果更不 理想。对于合成的结果 尽管旁瓣影响仍较大 但三

通过干涉场的连接有利于提高分辨能力。上述实验 结果同表1的估算符合得很好。

Fig. 5 The prepracessed data

Fig. 6 Connected data. (a) With(a) and (b) of Fig. 5; (b) With(c) and (d) of Fig. 5

Fig. 8 Point spreaded functions

本实验没有进行回波数据的整形,信号数据的 处理也只采用了较简单的方式,若对回波数据加以 整形,再作适当的旁瓣处理,可以得到更好的结果。

结论 利用多幅干涉场进行综合 ,可以达到孔径合 成的目的。

参考文献

[1] Marcus S , Colella B D , Green Jr. T J. Solid-state laser synthetic aperture radar. Appl. Opt., 1994, 33(6):960 ~964

- [2] Kachelmyer A L. Inverse synthetic aperture radar (ISAR) image processing. Proc. SPIE., 1992, 1633 :193~205
- [3] Green Jr T J, Marcus S et al.. Synthetic-aperture-radar imaging with a solid-state laser. Appl. Opt., 1995, 34 (30) 6941~6949
- [4] Aleksoff C C. Synthetic interferometric imaging technique for moving objects. Appl. Opt., 1976, 15(8):1923 ~ 1929
- [5] Su Xianyu, Li Jitao. Information Optics (信息光学). Chengdu: Sichuan University Press, 1995(in Chinese)
- [6] Yang Shizhong. Synthetic Aperture Lidar(合成孔径雷达). Beijing Defence Industry Press ,1981(in Chinese)

Synthesizing Aperture in Optics with Interferometric Imaging

Peng Renjun Wu Jian Yang Chunping Chen Changgeng

(Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054) (Received 9 January 2001; revised 19 March 2001)

Abstract: The resolution limitation in conventional interferometric imaging is analyzed. A method based on synthesizing pieces of fringe to improve the resolution is presented, and an experiment is designed to demonstrate the feasibility.

Key words : interference ; synthetic aperture ; position error